Hybrid Adsorption/Compression Chiller

Bashir Kanawati, M.Sc. Sales Engineer,
Fahrenheit GmbH
Adsorption cooling advantages

Saves up to 80% electricity compared to classic cooling

Functions without synthetic refrigerants or toxic substances

Helps in establishing a sustainable infrastructure

This Project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement N818329
The principle of adsorption

Water turns into vapor which gets adsorbed by the sorbent, causing evaporative cooling.
Adsorption chillers operation

- No moving parts inside the modules
- Water as refrigerant
- No toxic or climate damaging substances
Turning solar heat into cold

Solar heat -> Adsorption Chiller
Optional backup compressor
60-95°C
Re-cooling circuit
25-45°C
10-20°C
Cooling circuit (e.g. for A/C)
Base load coverage with adsorption

Annual cooling demand

- Adsorption: 76,421 kWh (93.6%)
- Compression: 0 kWh (0.1%)
- Free cooling: 2,231 kWh (2.7%)
- Required peak load: 6,664 kWh (7.9%)
- Occurrence: 2,015 h (76.6%)
- Free cooling: 94 h (3.4%)
- Monothermic: 835 h (31.0%)

This Project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement N818329
A Hybrid Chiller has decisive advantages for air conditioning and cooling demands

- Peak load coverage
- Efficiency increase
- Reduction of the payback period
- Expansion of areas of applications and utilization limits
- Compression chiller acts as back up to the adsorption chiller in base load operation
- Usage of Propane (R-290) as refrigerant in the compression part (GWP 3)
Flow Diagram & Operation Modes

Operation mode: monovalent adsorption

- Hot water
- Glycol water
- Chilled water

Adsorption
Compression
Operation mode: monovalent Compression

Flow Diagram & Operation Modes

- Hot water
- Glycol water
- Chilled water
Flow Diagram & Operation Modes

Operation mode: bivalent AdCh + CoCh

Hot water
Glycol water
Chilled water

Adsorption
Compression
Design parameters:

- Total cooling capacity: up to 100 kW
 - Adsorption part: up to 40 kW
 - Compression part: 60 kW
- Refrigerants:
 - Adsorption: Water (R718)
 - Compression: Propane (R290)
- Chilled water buffer tank: 1000 l
- Indoor installation
- Chilled water temperature: 8°C
- Hot water temperature: 95°C
- Required heat: 80 kW
- Dry Re-cooler with 160 kW capacity